

Multihazard of Cultural Heritage

Prof. Mario De Stefano

Cagliari - September 17, 2019

Co-Sponsored by:

Cultural heritage

Italy is a country with very wide cultural heritage in terms of «monuments, settlements, historical sites with aesthetic, archeological, scientific and anthropologic value»

(Unesco, 1972)

47 sites defined as «world heritage» (4.7%, 1st worldwide country)

46.9% of the national territory is part of protected areas

100.000 historical buildings (33.3 every 100 km²) (Ministry of Cultural Heritage - MiBACT, 2012)

Multi-hazard prevention

- > Aimed at the mitigation of multi-hazard consequences in terms of
 - life loss
 - damage
 - activities interruption
 - direct and indirect economical and social loss

Lower expenses with respect to those necessary after strong events (rehabilitation, reconstruction)

historical value

> Cultural heritage

cultural value identity value priceless!

Multi-hazard prevention and historical/monumental buildings

Combine SAFETY and PRESERVATION needs

- Generally the capacity against hazards is much lower than the demand old design concepts were not focusing on natural/anthropic hazards
- > Priority to identification and intervention on the most critical situations
- Due to preservation needs no invasive rehabilitation actions are viable, large increase of capacity against hazards cannot be obtained easily

In general, an higher risk level is accepted with respect to ordinary constructions, due to need to respect and preserve the cultural heritage

Multi-hazard prevention and historical/monumental buildings

HIGH LEVEL OF COMPLEXITY related to:

Complex structural typologies

subsequent construction phases during centuries inserted within the urban structure use of different materials (masonry, wood, steel, etc.)

Multidisciplinary approach

need for different expertises (architectural, engineering, historical, artistic, archeological...)

Complexity of the masonry material

composite nature difficulties in the analytical and numerical modeling

- No invasive tests (preservation) that would be necessary for a comprehensive knowledge of the construction
- Need for 'smart' interventions, respectful of the historical value of the construction

SEISMIC RISK

In the last three decades, Italy has been hit by about thirty earthquakes characterized by a magnitude higher than 5.0. Human lives and artworks have been lost as well as widespread damage has been observed in the built environment.

Seismic hazard in a given region is quantified through the mean annual frequency that a certain seismic intensity measure (e.g., peak-ground acceleration) occurs.

Seismic vulnerability of a building or a group of buildings is defined as their proneness to experience damage in occurrence of a seismic event

Exposition accounts for the number of objects and people subjected to the seismic action, therefore tightly linked to the local socio-economic system and building environment characteristics

1st SHORT COURSE ON MULTIHAZARD FOR EXTREME EVENTS: Fires, Explosions, Floods, Earthquakes, University of Cagliari (Italy), 17th – 20th September 2019

Umbria-Marche earthquake

(September 26, 1997)

Magnitudo 6.0

EARTHQUAKE RISK: recent italian earthquake

L'Aquila earthquake (April, 6 2009)

Magnitudo 6.1

Macerie e morte in Abruzzo

Sisma devastante: più di 150 vittime, 70 mila sfollati. Berlusconi: non vi abbandoniamo

la Terra Impazzita e i Giuramenti mai Mantenuti

// R m. Mail at also have site

CONTRACT AND INCOME.

LE FATALITÀ

PREVEDIBILI

and its ran

& GIAN ANTONIO STELLA

Emilia earthquake (May, 20 2012) Magnitudo 5.8

ERISCHESISMICESONO NOTE O. RENORATE Oltre cento scosse, la più forte di 5.9 gradi Richter. Lo sciame continua. Paura al Nord da Milano a Venezia

L'Emilia sfregiata dal terremoto

Crollano torri, rocche e chiese. Sette morti, emergenza per gli sfollati Tra le vittime quattro operai del turno di notte travolti in fabbrica

trade torrita, la frorre dei Modonezi losconata, Danneggista rella rezto è crollata alle 15.18 Lian, Costrato nel 1213 allo 19 li lo costa fa della addita della france. Pro al 1920 sociedo

una mantalani chiari, scarpe da tela, to-tat e strive. For old is who itslines he

Lo strisc

fe di uni. Nell'a

Central Italy earthquake (August 24, 2016)

Magnitudo 6.0

Morti e paesi cancellati

Sisma devasta il Centro Italia, oltre 150 vittime. Trappola in un albergo

HYDRAULIC RISK

Both environmental and anthropic aspects influence the hydrogeological risk.

HYDRAULIC RISK

The hydraulic risk represents the probability of damages into the system given a certain flood

The damages in the system can be produced by two mechanisms:

- overflow, which occurs when the riverbank is not able to stem the flood wave;
- riverbank collapse, which represents a settlement in the riverbank due to the flood wave.

Date: November 4, 1966

Deaths: 35

Other data:

• Florence was invested by 80

millions of cubic meters of water

• 4000 homeless families

Water level on the Baccio Bandinelli chorus near Duomo

The water level reached about 5 meters

UNA CITTA' COLPITA NEL CUORE DEL SUO PATRIMONIO CULTURALE

SI CALANO NEL BUIO DELLA MELMA PER AMORE DI LIBRI E DI FIRENZE

Giovani e stranieri fanno catena per strappare al fango opere preziose - Duecento volontari alla Biblioteca Nazionale - L'esperimento degli essiccatoi agricoli - Le drammatiche condizioni dell'Archivio di Stato e del Gabinetto Vieusseux - Gravissimi danni alle case editrici e alle librerie del centro - Occorrono carta assorbente, velina e borotalco, ma soprattutto braccia, per arrestare la muffa

- 1500 artworks damaged
- 1 million books submerged

Baptistery doors

Cimabue Christ in Santa Croce church

Santa Croce square

LANDSLIDE

Italy is one of the European Countries mainly hit by landslides: 620808 landslides over an area of 23700 km² (7.9% of the national territory) from 1116 to 2017 ("Inventario dei Fenomeni Franosi in Italia", <u>http://www.progettoiffi.isprambiente.it).</u>

LANDSLIDE RT 'Piano Assetto Idrogeologico' CLASSIFICATION

- Active landslide: continuous or discontinuous movement.
- Quiescent landslide: discontinuous movement; the causes of the landslide are still present
- Inactive landslide: not reactivable since the ground was stabilized by natural or artificial methods; the causes of the landslide are no more present

A DEFINITION FOR THE LANDSLIDE HAZARD

LANDSLIDE RISK: the Agrigento landslide

Date: July 19, 1966

Other data:

- 20 hectares of ground slided
- 4 buildings collapsed
- 7000 homeless

San Michele cathedral completely destroyed

29

EARTHQUAKE-INDUCED LANDSLIDES

Besides producing additional casualties and damages, earthquake-induced landslides can slow down or even prevent the rescue opertations. They are also characterized by a sudden detachment of the ground mass.

A famous example occurred the 18th January 2017 in Rigopiano (Italy)

Before the event

After the event

FIRE RISK

Fire risk is commonly subdivided in:

- Low fire risk: working places where low-flammable substances are present and it is unlikely the spread of the flames.
- **Medium fire risk**: working places where flammable substances are present and there is a limited possibility of spread of the flames.
- **High fire risk**: working places where high-flammable substances are present and there is a significant probability of spread of the flames.

FIRE PROTECTION STRATEGIES

SOURCES OF FIRE VULNERABILITY IN HISTORICAL BUILDINGS

84

FIRE RISK: Notre-Dame de Paris fire

Underestimation of the vulnerability to fire attack of the attic

The New York Times

Notre-Dame's Safety Planners Underestimated the Risk, With Devastating Results

PARIS — The architect who oversaw the design of the fire safety system at Notre-Dame acknowledged that <u>officials had misjudged</u> how quickly a flame would ignite and spread through the cathedral, resulting in a much more devastating blaze than they had anticipated.

The system was based on the assumption that if the cathedral ever caught fire, <u>the ancient oak timbers in the attic would burn slowly</u>, <u>leaving ample time to fight the flames</u>, said Benjamin Mouton, the architect who oversaw the fire protections.

A 31-Minute Gap

The response to the Notre-Dame fire wasted critical minutes before the fire department was alerted, safety experts said.

6:20 FIRST ALARM When the alarm P.M. sounded, a fire security agent alerted church employees. A church guard then climbed a steep staircase to assess the attic before the fire department could be notified.

6:26 • 6 minutes

REACHES ATTIC The guard did not see a fire and returned to the ground with the all-clear.

6:43 • 23 minutes

SECOND ALARM Just as the cathedral was closing to the public for the day, a second alarm went off.

6:49 • 29 minutes

RETURN TO ATTIC Two church employees climbed back up the stairs, but the flames were too high to do anything. On their way down, they realized they had locked the door and had to go back to open it.

6:51 • 31 minutes

FIRE DEPARTMENT CALLED After more than a half-hour, the call finally went out to dispatch firefighters.

By Allison McCann and Elian Peltier

"Fire alarms in France never automatically alert the fire department..."

Delay in the fire response

20 more minutes: time from the moment the alarm sounded until firefighters could arrive and climb to the attic with hundreds of pounds of hoses and equipment to begin battling a fire

Fire design philosophy of historic structures is similar to that of the seismic design

- Even if no cost was spared, there was also a conservative approach to preserving the historic wooden structure in its pristine form
- The designers were determined not to alter the attic with protective measures like sprinklers or fire walls

BLAST RISK: Ronan Point partial progressive collapse

41

Date: May 16, 1968

Deaths: 4

Injured: 17

Other data:

• Gas explosion in the kitchen

of the 18^{th} floor

• 22-storey tower block

collapsed

The collapse highlighted the importance of avoiding progressive collapse in structural design

CORRELATION BETWEEN THE HAZARDS

A quantitative definition of these correlations is far away to be accomplished!

44

Progress and Challenges in Seismic Performance Assessment

PEER research on seismic performance assessment is approaching the end of its second year. Much has been accomplished, but the end of the road still looks far away. In this brief article we describe the foundation on which performance assessment can be based, and the major challenges to the PEER research community on the way to expected success.

Proposed Probabilistic Foundation

The following scheme is presented as an effective foundation for the development of performance-based guidelines. It suggests a generic structure for coordinating, combining, and assessing the many considerations implicit in performance-based seismic assessment and design.

The suggested foundation in its generalized form assumes that the basis for assessing the adequacy of the structure or its design will be a vector of certain key *Decision Variables*, \underline{DV} , such as the annual earthquake loss and/or the exceedance of one or more limit states (e.g., collapse). These can only be predicted probabilistically. Therefore the specific objectives of engineering assessment analyses are in effect quantities such as $\lambda_s(x)$, the mean annual frequency₁ (MAF) of the loss exceeding x dollars, or such as λ_{sum} , the MAF of collapse, or more formally the mean annual frequency that the collapse indicator variables, I_{sum} , exceeds 0.

Then, the practical and natural analysis strategy involves the expansion and/or "disaggregation" of the MAF, $\lambda(DV)$, in terms of structural **Damage Measures**, DM, and ground motion **Intensity Measures**, IM, which can be written symbolically as

$\lambda(\underline{DV}) = \iint G(\underline{DV} \mid \underline{DM}) dG(\underline{DM} \mid \underline{IM}) d\lambda(\underline{IM})$

(1)

Here *GOV1DM* is the probability that the (vector of) decision variable(s) exceed specified values given (i.e., conditional on knowing) that the engineering Damage Measures (e.g., the maximum interstory drift, and/or the vector of cumulative hysteretic energies in all elements) are equal to particular values. Further, *GODV1MD* is the probability that the Damage Measure(s) exceed these values given that the Intensity Measure(s) (such as spectral acceleration at the fundamental mode frequency, and/or spectral shape parameters and/or duration) equal particular values. Finally *A*(*M*) is the MAF of the Intensity Measure(s).

Carl Allin Cornell (1938-2007)

Helmut Krawinkler (1940-2012)

The first version of the "PEER scheme" appeared online in 2000 on the section "PEER News" of the PEER web site

DEFINITION OF THE DECISION VARIABLES

The first step to face the risk assessment of various alternative solutions for design of a new construction or for interventions on an existing structure is represented by the definition of a proper decision variable(s), which should be easily understandable by the stakeholders or politicians.

In **engineering** one/some of the following DVs are commonly adopted :

- €/year spent to repair the structure
- downtime/year in which a facility or a monument is shut down to be repaired
- deaths/year

47

PEER APPROACH AS PERFORMANCE-BASED EARTHQUAKE ENGINEERING ANALYSIS METHODOLOGY^(*)

(*) Lee T.H, Mosalam K.M., Probabilistic seismic evaluation of reinforced concrete structural components and systems. *PEER Report 2006/04*, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, August, 2006.

PEER APPROACH FROM TOTAL PROBABILITY THEOREM

Let us consider the event of a certain decision variable A (e.g., "annual economic loss higher than x euro") and

the sample space S (the set of all possible events). One can write:

$$A = AS$$

Let us consider *n* events E_i related to a certain engineering demand parameter ("displacement at the building top")

$$egin{array}{lll} E_1 &: s_1 \leq s \leq s_1 + \Delta s \ E_2 &: s_2 \leq s \leq s_2 + \Delta s \ & \ldots \ E_{\mathbf{n}} &: s_n \leq s \leq s_n + \Delta s \end{array}$$

Since that they are **mutually exclusive** and **collectively exhaustive**, the sample space *S* is simply the sum of all the events:

$$S = E_1 \cup E_2 \dots \cup E_n$$

48

PEER APPROACH FROM TOTAL PROBABILITY THEOREM

 AE_n

En

S

By manipulating the previous equations one can write: $A = AS = A(E_1 \cup E_2 \dots \cup E_n)$

 E_3

By using a property of the sets:

 $AE_1 AE_2 AE_3$

$$A = A(E_1 \cup E_2 \dots \cup E_n) = AE_1 \cup AE_2 \dots \cup AE_n$$

It can be assigned the probabilities to the previous sets and then:

$$P(A) = P(AE_1) + P(AE_2) + P(AE_n)$$

Thanks to the conditional probability definition, we can write:

 $P(A) = P(A|E_1)P(E_1) + P(A|E_2)P(E_2) + ... + P(A|E_n)P(E_n)$

For continuous events:

 E_2

E₁

 $P(A) = \int P(A|E)p(E)dE$

49

PEER APPROACH

Cornell & Krawinkler^(*) from PEER (Pacific Earthquake Engineering Research) center proposed:

$$\lambda(\mathbf{DV}) = \int \int G(\mathbf{DV}|\mathbf{DM}) |dG(\mathbf{DM}|\mathbf{IM})| |d\lambda(\mathbf{IM})|$$

Few years later, Krawinkler^(**):

$\lambda(\mathbf{DV}) = \int \int \int G(\mathbf{DV}|\mathbf{DM}) |dG(\mathbf{DM}|\mathbf{EDP})| |dG(\mathbf{EDP}|\mathbf{IM})| |d\lambda(\mathbf{IM})|$

The PEER formulation can be applied in the present form for **mono-hazard risk assessments**, its application to multi-hazard problems require an extension and additional information difficult to find

^(*) Cornell C.A., Krawinkler H. Progress and challenges in seismic performance assessment. PEER center news; 2000. < http://peer.berkeley.edu/news/ 2000spring/index.html>.

^(**) Krawinkler H., A general approach to seismic performance assessment. In International Conference on Advances and New Challenges in Earthquake Engineering Research, First annual meeting of ANCER, Hong Kong, China, 2002

PEER APPROACH

The PEER expression is obtained by applying three times the total probability theorem:

$\lambda(\mathbf{DV}) = \int \int \int G(\mathbf{DV}|\mathbf{DM}) |dG(\mathbf{DM}|\mathbf{EDP})| |dG(\mathbf{EDP}|\mathbf{IM})| |d\lambda(\mathbf{IM})|$

- $\lambda(\mathbf{DV})$ is the mean annual frequency (MAF) of the decision variable (inverse of the return period)
- G(DV|DM) is the probability of exceedance of a certain decision variable given a specific damage in the structure (term provided by the seismic engineering researchers, economists and practitioners)
- G(DM|EDP) is the probability of exceedance of a certain damage variable given a specific engineering demand parameters (term provided by the seismic engineering researchers and practitioners)
- G(EDP|IM) is the probability of exceedance of a certain engineering demand parameters given a specific intensity measure (term provided by the seismic engineering researchers)
- λ (**IM**) is the mean annual frequency (MAF) of the intensity measure at the site of the structure (term provided by **seismologists**)

HAZARD ANALYSIS

This analysis is conducted to describe the earthquake hazard in a probabilistic manner

$\lambda(\mathbf{DV}) = \int \int \int G(\mathbf{DV}|\mathbf{DM}) |dG(\mathbf{DM}|\mathbf{EDP})| |dG(\mathbf{EDP}|\mathbf{IM})| |d\lambda(\mathbf{IM})|$

Input:

- nearby faults
- their magnitude-recurrence rates
- fault mechanism
- source-site distance
- site conditions

Output:

- hazard curve
- selection of a number of ground motion time histories compatible with the hazard curve

(*) Cornell C.A., Engineering seismic risk analysis. Bulletin of the Seismological Society of America, Vol. 58, No. 5, pp. 1583-1606, October, 1968.

HAZARD ANALYSIS

The *hazard curve* represents the variation of a selected *intensity measure* (ground motion parameter), denoted by IM, against the mean annual frequency of exceedance.

Assuming that the occurrence of an earthquake follows a *Poisson model*, the probability of exceedance of an intensity parameter in "t" years corresponding to a given mean annual frequency of exceedance is calculated through:

$$P(IM) = 1 - e^{\lambda(IM)t}$$

Intensity measures (IMs) adopted in earthquake engineering are:

- Peak ground acceleration PGA
- Peak ground velocity PGV
- Spectral acceleration at the period of the first mode S_a(T₁)
- Structure-specific intensity measures^(*)

(*) Luco N., Cornell C.A., Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthquake Spectra 23 (2), pp. 357-392, May, 2007.

STRUCTURAL ANALYSIS

This analysis is conducted to determine the response of a structure to several levels of earthquake in a probabilistic manner.

 $\lambda(\mathbf{DV}) = \int \int \int G(\mathbf{DV}|\mathbf{DM}) |dG(\mathbf{DM}|\mathbf{EDP})| |dG(\mathbf{EDP}|\mathbf{IM})| |d\lambda(\mathbf{IM})|$

Input:

- ground motion records
- computational model of the structure
- uncertainties of the input parameters of the computational model

Output:

- vulnerability surface
- vulnerability curve

STRUCTURAL ANALYSIS

Engineering demand parameters (EDPs) adopted in earthquake engineering depends on the specific structure as well as problem:

- displacement to the top of the structure (*e.g.*, frame structures, towers)
- interstory drift (*e.g.*, frame structures)
- rotation of joints (e.g., racks)
- forces (e.g., non-ductile frame structures)
- floor accelerations (e.g., art objects)

STRUCTURAL ANALYSIS

This analysis allows obtaining the *vulnerability surface* as well as the *vulnerability curve* corresponding to a certain EDP

DAMAGE ANALYSIS

This analysis is conducted to determine the damage of a structure for different structural responses in a probabilistic manner

$$\lambda(\mathbf{DV}) = \int \int G(\mathbf{DV}|\mathbf{DM}) |dG(\mathbf{DM}|\mathbf{EDP})| |dG(\mathbf{EDP}|\mathbf{IM})| |d\lambda(\mathbf{IM})$$

Input:

 data on the correlation between the structural response (EDP) and the various typologies of damage

Output:

- damage surface
- damage curve

DAMAGE ANALYSIS

- All the main components need to be separated into performance group
- Each group is affected by the same EDP
- A fragility curve is assigned to each group

Performance	Components	FDP
group	Components	LDI
PG1	Structural system (lateral	Δ_1
PG2	load resisting system)	Δ_2
PG3	load resisting system)	Δ_3
PG4	Exterior enclosure (glass)	Δ_1
PG5		Δ_2
PG6		Δ_3
PG7	Drift sensitive non-	Δ_1
PG8		Δ_2
PG9	structural cicilicitis (doors)	Δ_3
PG10	Acceleration sensitive non-	a ₂
PG11	structural elements (ceiling	a3
PG12	tiles)	a _R
PG13	Office content (computers)	ag
PG14		a ₂
PG15		a3
PG16	Equipment on roof	aR

Table 6.8 Performance groups

Components		>= DS2	>= DS3	>= DS4
Standard and	Median	1.5	2.5	3.5
Structural system	C.o.v.	0.25	0.30	0.30
Exterior enclosure	Median	2.8	3.1	-
Exterior enclosure	C.o.v.	0.097	0.12	-
Drift sensitive non-	Median	0.39	0.85	-
structural elements	C.o.v.	0.17	0.23	-
Acceleration sensitive	Median	1.0	1.5	2.0
non-structural elements	C.o.v.	0.15	0.2	0.2
Office content	Median	0.3	0.7	3.5
Office content	C.o.v.	0.20	0.22	0.25
Equipment on coof	Median	1.0	2.0	-
Equipment on 1001	C.o.v.	0.15	0.2	-

Table 6.9 Definition of fragility cuves

DAMAGE ANALYSIS

This analysis allows obtaining the *damage surface* as well as the *damage curve* corresponding to a certain DM

LOSS ANALYSIS

This analysis is conducted to determine the losses corresponding to different levels of structural damage in a probabilistic manner

Input:

 data on the correlation between the various typologies of structural damage (DM) and the losses

Output:

- loss surface
- loss curve

LOSS ANALYSIS

Decision variables (DVs) adopted in earthquake engineering is usually proposed by the stakeholders or

owners together with the technical experts. A list of meaningful parameters for the stakeholders is here

attempted:

- €/year spent to repair the structure
- downtime/year in which an industry or a monument is closed to be repaired
- deaths/year

LOSS ANALYSIS

This analysis allows obtaining the loss surface as well as the loss curve corresponding to a certain DV

PEER APPROACH IS A MODULATE APPROACH

The scheme "de-convolves" the evalutation of the probabilistic behaviour of a decision variable (DV) by

introducing three intermediate variables:

- A structural damage measure DM
- An engineering demand parameter EDP

An intensity measure IM

 $\lambda(\mathbf{DM}) = \int G(\mathbf{DM}|\mathbf{EDP}) |d\lambda(\mathbf{EDP})|$

 $\lambda(\mathbf{EDP}) = \int G(\mathbf{EDP}|\mathbf{IM}) |d\lambda(\mathbf{IM})|$

 $\lambda(\mathbf{IM})$

to which can be associated the corresponding curves.

Once the various terms are defined, one can obtain the loss curve useful for the stakeholders

 $\lambda(\mathbf{DV}) = \int G(\mathbf{DV}|\mathbf{DM}) |d\lambda(\mathbf{DM})|$

53

APPLICATION OF THE PEER APPROACH FOR A MULTIHAZARD ANALYSIS

To apply the PEER approach for the risk assessment of the other hazards, we need to define:

- the proper decision variables (DVs), damage measures (DMs), engineering demand parameters (EDPs) and intensity measures (IMs)
- to estimate the various probabilities of exceedance present in the scheme

In a multihazard risk assessment, the right choice of the decision variable can allow to compare and to prioritize the interventions in the different fields (flood, earthquake, blast, fire, landslide risks, etc.)

Leaving aside the problem of defining the probabilistic terms, one of the main concerns regards the

definition of the correlation among the various hazards.

Intensity Measures (IMs) for various hazards

Fire	Flood	Earthquake	Blast	Landslide
 Intensity 	• Water level in the river	 PGA S_a(T₁) 	 Intensity 	SlidingSettlement

Engineering Demand Parameters (EDPs) for various hazards

Fire	Flood	Earthquake	Blast	Landslide
• Rate of spread	 Water level in the invested system Water velocity in the invested system near the river 	 Interstory drift Floor acceleration Horizontal displacement top level 	• Degree of expulsion	 Forces/Stresses in the structure Interstory drift Floor acceleration Horizontal displacement top level

Damage Measures (DMs) for various hazards

Fire	Flood	Earthquake	Blast	Landslide
• # of	• # of	• # of	• # of	• # of
damaged	damaged	damaged	damaged	damaged
structural	contents	structural	structural	structural
elements		elements	elements	elements
• # of		• # of	• # of	• # of
damaged		damaged	damaged	damaged
contents		contents	contents	contents

Decision Variables (DVs) for various hazards

Fire	Flood	Earthquake	Blast	Landslide
• €/year	• €/year	• €/year	• €/year	• €/year
• Days/year of	• Days/year of	• Days/year of	• Days/year of	• Days/year of
closure	closure	closure	closure	closure
(downtime)	(downtime)	(downtime)	(downtime)	(downtime)
Casualties/year	• Casualties/year	• Casualties/year	• Casualties/year	• Casualties/year
• Injured/year	• Injured/year	• Injured/year	• Injured/year	• Injured/year

RISK ASSESSMENT APPROACH

The details to be considered depend on the **extension of the system**. As a matter of fact, the

approaches can be classified into:

- **Macroscale** risk assessment procedures (entire city, bridge network, etc.), in which statistics on similar case studies are used to define the various probabilistic terms
- Microscale risk assessment procedures (single building, bridge, facilities, etc.), where detailed
 analysis are developed and specific experimental *in situ* tests/measurements are used for a proper
 definition of the models

MULTISCALE APPROACH FOR THE RISK ASSESSMENT OF CULTURAL HERITAGE

MULTISCALE APPROACH: Modena cathedral

Several wood elements at risk due to fire hazard

Precious content

Large number of occupants

Museum adjacent to the cathedral

Risk of spread of the fire

MULTISCALE APPROACH: CRACO

VIII – X secolo a.C.

390 m a.s.l.

Landslide from 1959 to 1972 Evacuation in 1962 and 1991 calanchi

MULTISCALE APPROACH: NORMANNA TOWER

Vault

Tank

Modal analysis of the complete model

MODE	PARTICIPATION	FOR TRANSLATION	NAL EXCITATION			
Mode	Frequency	Modal Mass	Modal Stiff	PF-X	PF-Y	PF-Z
	(Hz)	(Eng)	(Eng)	(%)	(%)	(%)
1	2.6435E+00	8.9887E+05	2.4798E+08	0.001	71.557	0.000
2	3.1350E+00	5.9616E+05	2.3132E+08	49.177	0.002	0.000
3	5.0349E+00	9.8685E+05	9.8764E+08	0.001	0.155	0.000
4	7.1541E+00	6.5488E+05	1.3232E+09	0.004	12.011	0.000
5	1.0165E+01	1.8344E+06	7.4831E+09	0.052	0.154	0.000
6	1.0585E+01	3.7858E+05	1.6746E+09	11.626	0.002	0.000
7	1.0851E+01	1.2449E+05	5.7865E+08	5.999	0.962	0.000
8	1.0854E+01	1.2447E+05	5.7884E+08	0.963	5.999	0.000
9	1.1782E+01	3.3993E+05	1.8629E+09	2.023	0.003	0.000
10	1.2961E+01	1.3162E+05	8.7286E+08	0.000	1.653	0.000
11	1.4176E+01	1.0133E+06	8.0388E+09	0.048	0.055	0.000
12	1.7204E+01	1.4295E+05	1.6704E+09	0.249	0.409	0.000
13	1.7979E+01	3.2259E+05	4.1167E+09	0.157	0.081	0.000
14	1.8196E+01	3.0459E+05	3.9812E+09	0.007	0.017	0.000
15	1.9089E+01	2.1236E+05	3.0551E+09	0.135	0.075	0.000
16	2.0319E+01	2.1817E+05	3.5562E+09	0.895	0.247	0.000
17	2.1008E+01	1.5760E+05	2.7461E+09	1.642	0.020	0.000
18	2.1210E+01	2.0623E+05	3.6626E+09	0.003	0.005	0.000
19	2.3134E+01	9.4985E+03	2.0069E+08	0.222	0.152	0.000
20	2.3270E+01	8.9804E+04	1.9198E+09	0.000	0.000	0.000
21	2.3305E+01	1.1318E+05	2.4269E+09	0.000	0.000	0.000
22	2.3597E+01	9.0642E+03	1.9925E+08	0.022	0.115	0.000
23	2.3752E+01	1.4403E+04	3.2078E+08	0.067	0.004	0.000
24	2.4791E+01	2.1942E+04	5.3240E+08	0.000	0.653	0.000
25	2.5104E+01	4.5612E+03	1.1348E+08	0.082	0.050	0.000
TOTAI	TRANSLATIONAL	MASS PARTICIP	ATION FACTORS	73.374	94.381	0.000

	Frequency [Hz]	Period [s]
I mode	2,643	0,38
II mode	3,135	0,31
III mode	5,034	0,19
IV mode	7,154	0,14
V mode	10,016	0,10
VI mode	10,058	0,09

Modal analysis

Complete model

Model with only masonry

Model of the tank

MULTISCALE APPROACH: VOLTERRA URBAN WALLS

Buildings, infrastructures and plants

Structural deterioration and weak points observed during the survey

Masonry texture, different periods of construction

Earthquake analysis

SIMPLIFIED IMPLEMENTATION FOR THE HISTORIC CITY CENTER OF FLORENCE

MULTIHAZARDS FOR CULTURAL HERITAGE

86

CONSTRUCTION PERIODS

DIVISION INTO PERIODS

"Matildina walls" (Dante, Paradiso, XV, 97) built in 1078 by Tuscany Countess Matilde di Canossa

DAMAGE INDEX^(*)

Typologies				Vulnerability Classes							
	- /		Building type		B	C	D	E	F		
		M1	Rubble stone								
		M2	Adobe (earth bricks)								
Γ		M3	Simple stone								
		M4	Massive stone								
		M5	Unreinforced M (old bricks)								
		M6	Unreinforced M with r.c. floors								
		M7	Reinforced or confined masonry								
		RC1	Frame in r.c. (without E.R.D)								
	P	RC2	Frame in r.c. (moderate E.R.D.)								
	e <u>e</u>	RC3	Frame in r.c. (high E.R.D.)								
	ifoi cre	RC4	Shear walls (without E.R.D)								
	one	RC5	Shear walls (moderate E.R.D.)								
	N C	RC6	Shear walls (high E.R.D.)								
	Stell	S	Steel structures								
	Tiber	W	Timber structures								
	Situation	e Mo	st probable class: Possible class:	Unl	ikaly (lace (avcant	ional	(acac)		

Situations: Most probable class; Possible class; Unlikely class (exceptional cases)

Mean annual loss Perdita Annua Media attesa PAM

For both the parameters (ID and PAM) the

EMS-98 structural typologies are considered

(*) Giovinazzi S., Lagomarsino S., A macroseismic method for the vulnerability assessment of buildings. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, 2004.

DAMAGE INDEX

Vulnerability classes for the different building typologies: EMS98

<u>Typologies</u>		Building type	Vulnerability Class EMS98 Vulnerability Index						Vulnerability Index					
		Building type	Α	В	С	D	E	F	<u>V</u> Imin	Vı	Vi*	V _I +	Vimax	
	M1	Rubble stone							0.62	0.81	0.873	0.98	1.02	-
	M2	Adobe (earth bricks)							0.62	0.687	0.84	0.98	1.02	$V_{I} = V_{I}^{*} + DV_{}$ \longrightarrow Vulnerability index
l [M3	Simple stone							0.46	0.65	0.74	0.83	1.02	
	M4	Massive stone							0.30	0.49	0.616	0.793	0.86	
검	M5	Unreinforced M (old bricks)			<u> </u>				0.46	0.65	0.74	0.83	1.02	
ISOI	WO	Onreinforced W With L.C. Hoors							0.30	0.49	0.010	0.19	0.00	
W)	M7	Reinforced or confined masonry							0.14	0.33	0.451	0.633	0.70	V [*] ──→ Typological vulnerability index
	RC1	Frame in r.c. (without E.R.D.)				<u> </u>			0.3	0.49	0.644	0.80	1.02	
	RC2	Frame in r.c. (moderate E.R.D.)							0.14	0.33	0.484	0.64	0.86	
_	RC3	Frame in r.c. (high E.R.D.)							-0.02	0.17	0.324	0.48	0.70	
ete	RC4	Shear walls (without E.R.D.)							0.3	0.367	0.544	0.67	0.86	$\nabla \mathbf{x}_{i}$ Factor accounting for
ainfo	RC5	Shear walls (moderate E.R.D.)							0.14	0.21	0.384	0.51	0.70	$\mathbf{DV}_{m} = \sum \mathbf{V}_{m,k} \longrightarrow$ the seismic behavior
ဆီပိ	RC6	Shear walls (high E.R.D.)							-0.02	0.047	0.224	0.35	0.54	
Steel	S	Steel structures						i –	-0.02	0.17	0.324	0.48	0.70	
Tiber	W	Timber structures	1						0.14	0.207	0.447	0.64	0.86	1
Condit	ion	More proba	able	1	Possib	le		I	Less pro	bable				

Scores for the modification factors related to the masonry building behavior

	Masonry		Reinforced Concre	ete			
Behaviour modifier			ERD Level	Pre/Low	Medium	Hight	
		V _{mk}		V _{mk}	V _{mk}	V _{mk}	
State of	Good	-0.04	Good	-	-	-	
preservation	Bad	+0.04	Bad	+0.04	+0.02	0	
	Low (1or 2)	-0.04	Low (1-3)	-0.02	-0.02	-0.02	
Number of floors	Medium (3,4 or 5)	0	Medium (4-7)	0	0	0	
	High (6 or more)	+0.04	High (8 or more)	+0.08	+0.06	+0.04	
	Wall thickness						
Structural system	Wall distance	$-0.04 \div +0.04$					
	Wall connections						
Dian Irramiarity	Geometry	:0.04	Geometry	+0.04	+0.02	0	
Plan megularity	Mass distribution	+0.04	Mass distribution	+0.02	+0.01	0	
Vertical Irregularity	Geometry	+0.04	Geometry	+0.04	+0.02	0	
ventieur megunanty	Mass distribution	10.01	Mass distribution				
Superimposed flors		+0.04					
Roof	Weight, thrust and connections	+0.04					
Retroffiting		-0.08÷+0.08					
Aseismic Devices	Barbican, Foil arches, Buttresses	-0.04		•			
A	Middle	-0.04					
Aggregate Building:	Corner	+0.04	insufficient	+0.04	0	0	
position	Header	+0.06	aseismic joints				
A	Staggered floors	+0.04					
Aggregate Building: elevation	Buildings with different height	-0.04÷+0.04					
			Beams	-0.04	0	0	
E	Different level	.0.04	Connected	0	0	0	
Foundation	foundations	+0.04	beams		0	0	
			Isoleted Footing	+0.04	0	0	
			Short-column	+0.02	+0.01	0	
			Bow windows	+0.04	+0.02	0	

	12	? Parameters:	
	1.	Conservation status	0
	2.	Number of stories	0
	З.	Structural system	
	4.	Plan irregularity	
	5.	Elevation irregularity	
	6.	Raising of a building	0
	7.	Roof	
	8.	Adjustement intervention	
	9.	Antiseismic devices	
	10	Planimetric configuration	C
	11	. Elevation configuration	0
	12	P. Foundations	
L			

 $\mu_{\rm D} = 2.5 + 3 \tanh\left(\frac{1 + 6.25 \text{V} - 12.7}{2.3}\right) \mid 0 \le \mu_{\rm D} \le 5$ Damage index

DAMAGE INDEX

Macroseismic intensity 6

Macroseismic intensity 8

Mean annual loss

PAM (Perdita Annuale Media attesa, in italian)

Structural typology

Some buildings present an increase of vulnerability (from V_5 to V_6) due to the presence of some vulnerability sources in their structural behaviour

Risk class

Classe di Rischio	РАМ	Zona 1	Zona 2	Zona 3	Zona 4
A+*	PAM ≤ 0,50%				$V_1 \div V_2$
A*	0,50% <pam≤1,0%< td=""><td></td><td></td><td>$V_1 \div V_2$</td><td>$V_3 \div V_4$</td></pam≤1,0%<>			$V_1 \div V_2$	$V_3 \div V_4$
B*	1,0% <pam≤1,5%< td=""><td>Vı</td><td>$V_1 \div V_2$</td><td>V₃</td><td>V₅</td></pam≤1,5%<>	Vı	$V_1 \div V_2$	V ₃	V ₅
C*	1,5% <pam≤2,5%< td=""><td>V2</td><td>V3</td><td>V₄</td><td>V₆</td></pam≤2,5%<>	V2	V3	V₄	V ₆
D*	2,5% <pam≤3,5%< td=""><td>V₃</td><td>V4</td><td>$V_5 \div V_6$</td><td></td></pam≤3,5%<>	V ₃	V4	$V_5 \div V_6$	
E	3,5% <pam≤4,5%< td=""><td>V₄</td><td>V₅</td><td></td><td></td></pam≤4,5%<>	V ₄	V ₅		
F*	4,5% <pam≤7,5%< td=""><td>V₅</td><td>V₆</td><td></td><td></td></pam≤7,5%<>	V ₅	V ₆		
G*	7,5%≤PAM	V ₆			

94

Case A – Low rebuilding

- Mean costs for repairing 217 €/m²
- Mean costs for retrofitting 68 \notin /m²

Tot. 285 €/m²

Caso B – High rebuilding

- Mean costs for repairing 448 €/ m²
- Mean costs for seismic improvement $320 \notin m^2$
- Mean cost for tests and energetic adjustment 69 $\ensuremath{ \mbox{ \ell}}/\ensuremath{\,m^2}$

Cost €/m² - I=6 e z=3

Cost €/m² - I=8 e z=2

97

FLOOD RISK

• R=HE**V**

Vulnerability curve for a building with one underground (basement) floor

Results: water level in the area under examination for 1966-type flood

Hydraulic discontinuity between the East-side of historical center and the ancient 'castrum romanum'.

Courtesy of Arrighi & Castelli, DICEA - UNIFI

RISK EVALUATION

Courtesy of Arrighi & Castelli, DICEA - UNIFI

Danno - Frequenza di superamento

FLOOD RISK – Average Annual Loss (PAM)

Courtesy of Arrighi & Castelli, DICEA - UNIFI

SEISMIC-FLOOD RISK ASSESSEMENT

• Since no correlation between the two hazards can be considered the mean annual frequency of

the decision variables can be simply added

• A direct comparison between the two hazards can be done.

PRELIMINARY CONCLUSIONS OF THE MULTI-HAZARD RISK ASSESSEMENT

- The maximum costs due to the floods can be compared to those related to earthquakes (earthquake-induced damages higher than flood-induced damages ?????)
- For a non negligible number of buildings the total cost (earthquake + flood) could reach the value of 43 €/m² per year (?????)
- The different "weight" of the two costs could influence the choices of the politicians/managers on the allocation of future monetary sources for risk mitigation in the Florence center.

n4

National Research Project PRIN 2015

"MITIGATING THE IMPACTS OF NATURAL HAZARDS ON CULTURAL HERITAGE SITES, STRUCTURES AND ARTEFACTS (MICHe)"

