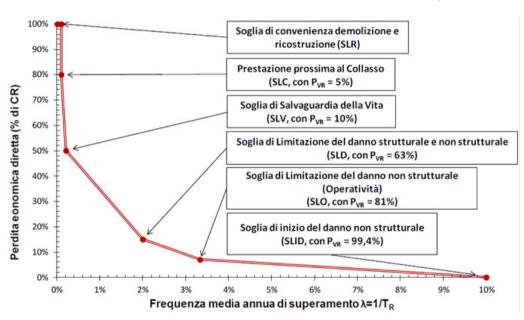


Località: Italia_Basilicata_Craco (MT)

Periodo di realizzazione: VIII – X secolo a.C.

Quota s.l.m.: 390 m circa


Caso studio

La Torre Normanna

Linee Guida per la Classificazione del Rischio Sismico delle Costruzioni

Perdita Annuale Media attesa (PAM): perdite economiche dovute ai possibili danni degli elementi strutturali e non strutturali in termini di percentuale del **Costo di Ricostruzione CR**

Perdita Media Annua attesa (PAM)	Classe PAM
PAM ≤ 0,50%	A ⁺ _{PAM}
0,50% < PAM ≤ 1,0%	A _{PAM}
1,0% < PAM ≤ 1,5%	B _{PAM}
1,5% < PAM ≤ 2,5%	C _{PAM}
2,5% < PAM ≤ 3,5%	D _{PAM}
3,5% < PAM ≤ 4,5%	E _{PAM}
4,5% < PAM ≤ 7,5%	F _{PAM}
7,5% ≤ PAM	G _{PAM}

$$T_{rC} = T_{rD} (PGA_{C}/PGA_{D})^{\eta}$$

 $\eta = 1/0,43 \text{ per } 0,25g \ge a_g \ge 0,15g$

Per ciascun tempo di ritorno (T_{rc}) è possibile definire la frequenza media annua di superamento (λ)

$$PAM = \sum_{i=2}^{5} (\lambda_{SLi-1} - \lambda_{SLi}) \cdot (CR_{SLi} + CR_{SLi-1})/2 + \lambda_{SLC} \cdot CR_{SLR}$$

Linee Guida per la Classificazione del Rischio Sismico delle Costruzioni

Definizione del «nuovo» Costo di Ricostruzione CR*

■ *I parametro*_ Costo di ricostruzione della torre **CR**

■ *II parametro_ V*alore storico-artistico: perdita di fruibilità **PF**

Perdita economica mensile**
dovuta alla non fruizione del bene

(**Tempo di "ripristino" della struttura)

CR*=CR+PF

Analisi del Costo di Ricostruzione CR*

	Costo di ricostruzione Prezziario regionale 2018 - Regione Basilicata								
	spess	h/larg.	lung	n		tot	U.M.	Prezzo unitario	Prezzo parziale
	2,15	13,61	8,46		2,00	495,10	mc	€ 178,37	€88.311,80
	2,15	13,61	8,76		2,00	512,66	mc	€ 178,37	€91.443,43
	1,70	7,56	8,46		2,00	217,46	mc	€ 178,37	€38.787,60
	1,70	7,56	8,76		2,00	225,17	mc	€ 178,37	€40.163,04
	0,85	0,76	9,20		2,00	11,89	mc	€ 178,37	€2.120,18
Murat —	0,85	0,76	9,50		2,00	12,27	mc	€ 178,37	€2.189,31
ura									€263.015,37
Solaio	0,25	4,16	4,46			18,55	mq	€ 54,64	€1.013,77
Cls	0,25	4,90	5,20			25,48	mq	€ 54,64	€1.392,23
Rck30									€2.406,00
	0,35	r=3,2	0	area base cister	na	32,15	mq	€ 134,40	€4.320,96
Cistern									
a Cls	0,35	17,30		area laterale cis	terna	347,66	mq	€ 134,40	
Rck25									€51.046,46
тот									€316.467,83

Tempo di ripristino (mesi)	t	12
Numero mensile di biglietti	n	1.416
Costo biglietto	C _h	€ 10,00

Costo di ricostruzione	CR	€ 316.468,00
Perdita di fruibilità	PF	€ 170.000,00
Costo di ricostruzione*	CR*	€ 486.468,00

Linee Guida per la Classificazione del Rischio Sismico delle Costruzioni

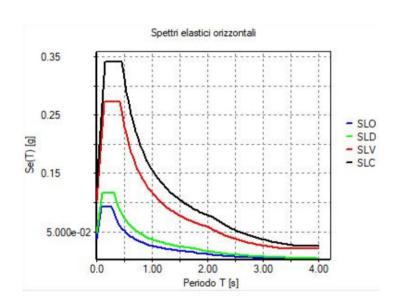
Perdita Annuale Media attesa (PAM)

Indicazioni fornite dalle Linee Guida per la Classificazione del Rischio Sismico delle Costruzioni

Stato Limite	CR(%)
SLR	100%
SLC	80%
SLV	50%
SLD	15%
SLO	7%
SLID	0%

CASO STUDIO			
Costo SLR	€ 486.468,00		
Costo SLC	€ 389.174,00		
Costo SLV	€ 194.587,00		
Costo SLD	€ 72.232,00		
Costo SLO	€ 34.053,00		
Costo SLID	€ 0,00		

Linee Guida per la Classificazione del Rischio Sismico delle Costruzioni

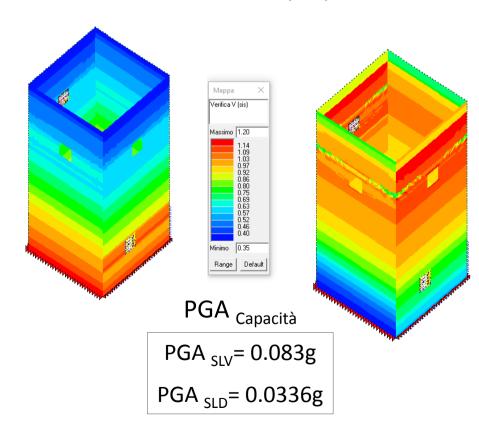

Verifica N-M ortogonale

Massimo 1.00

0.93 0.87 0.80 0.74 0.67 0.54 0.54 0.47 0.47 0.41 0.28 0.28 0.21 0.15 8.093e-02

Minimo 1.529e-02

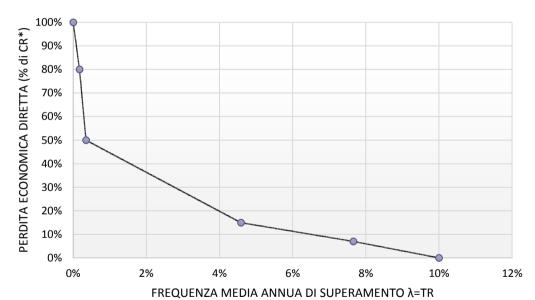
Spettro di Risposta (CRACO)


PGA _{Domanda}

$$PGA_{SLV} = 0.103g$$

 $PGA_{SLD} = 0.048g$

Verifiche Dinamiche:


Stato Limite di Salvaguardia della Vita (SLV) Stato Limite di Danno (SLD)

Linee Guida per la Classificazione del Rischio Sismico delle Costruzioni

Perdita Annuale Media attesa (PAM): perdite economiche dovute ai possibili danni degli elementi strutturali e non strutturali in termini di percentuale del **Costo di Ricostruzione CR**

Curva valutazione PAM

FREQUENZA MEDIA ANNUA DI SUPERAMENTO $\lambda=1/T_R$						
SLR	100%	λ_{SLR}	0			
SLC	80%	λ_{SLC}	0.002			
SLV	50%	λ_{SLV}	0.003			
SLD	15%	λ_{SLD}	0.046			
SLO	7%	λ_{SLO}	0.077			
SLID	2 0.400					

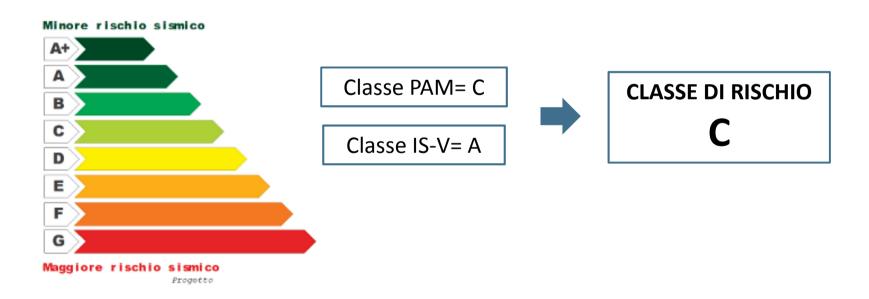
Linee Guida per la Classificazione del Rischio Sismico delle Costruzioni

Perdita Annuale Media attesa (PAM): perdite economiche dovute ai possibili danni degli elementi strutturali e non strutturali in termini di percentuale del **Costo di Ricostruzione CR**

$$PAM = \sum_{i=2}^{5} (\lambda_{SLi-1} - \lambda_{SLi}) \cdot (CR_{SLi} + CR_{SLi-1})/2 + \lambda_{SLC} \cdot CR_{SLR}$$

PAM=2.07%

Perdita Media Annua attesa (PAM)	Classe PAM	-	
PAM ≤ 0,50%	A ⁺ _{PAM}	_	
0,50% < PAM ≤ 1,0%	A _{PAM}		
1,0% < PAM ≤ 1,5%	В		
1,5% < PAM ≤ 2,5%	C _{PAM}		Classe PAM= C
2,5% < PAM ≤ 3,5%	D _{PAM}		
3,5% < PAM ≤ 4,5%	E _{PAM}	_	
4,5% < PAM ≤ 7,5%	F _{PAM}	_	
7,5% ≤ PAM	G _{PAM}	-	


Linee Guida per la Classificazione del Rischio Sismico delle Costruzioni

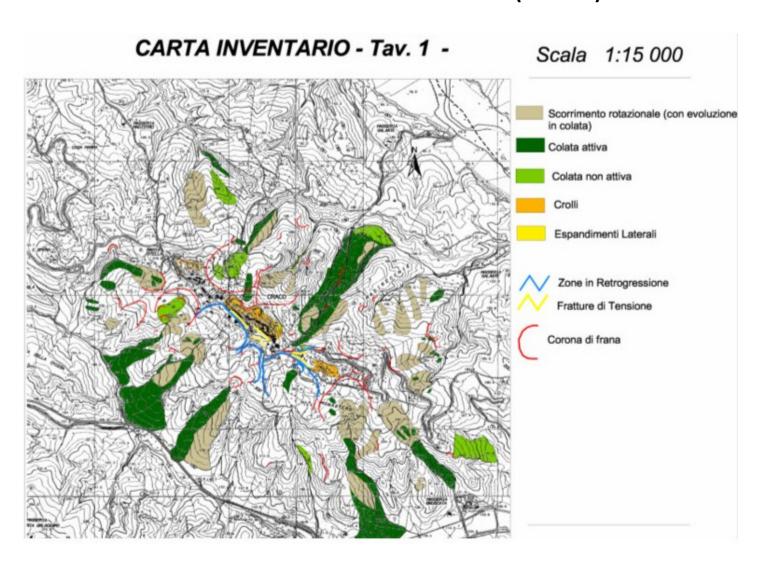
Indice di sicurezza (IS-V) o Indice di Rischio della struttura: rapporto tra capacità e domanda della costruzione in termini di accelerazione di picco al suolo **PGA** per lo Stato Limite di Salvaguardia delle Vita (SLV)

Indice di Sicurezza	Classe IS-V	
100% < IS-V	A ⁺ _{IS-V}	
80% ≤ IS-V < 100%	A _{IS-V}	
60% ≤ IS-V < 80%	B _{IS-V}	
45% ≤ IS-V < 60%	C _{IS-V}	
30% ≤ IS-V < 45%	D _{IS-V}	
15% ≤ IS-V < 30%	E _{IS-V}	
IS-V ≤ 15%	F _{IS-V}	

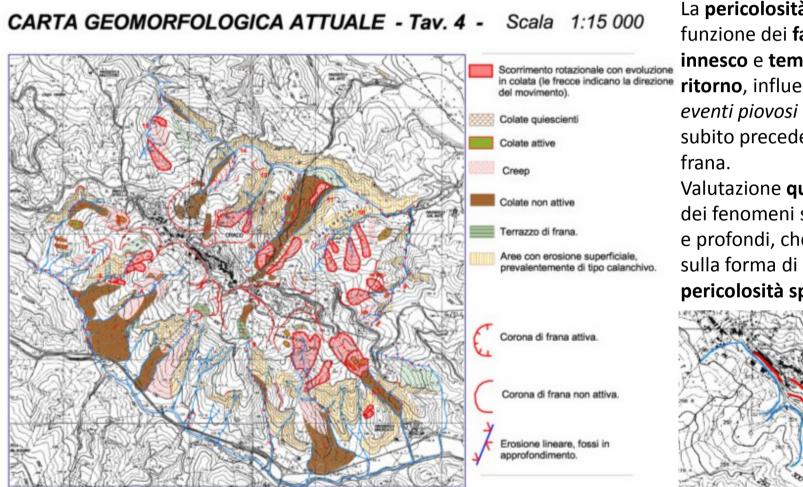
Linee Guida per la Classificazione del Rischio Sismico delle Costruzioni

La **Classe di Rischio** è definita come la peggiore tra la **Classe PAM** e la **Classe IS-V**, corrispondente quindi al rischio sismico maggiore.

RISCHIO FRANA = Combinazione di **Pericolosità, Esposizione** e **Vulnerabilità.**


Pericolosità: Stima quantitativa e/o qualitativa dei fenomeni franosi e della loro ricorrenza, in una determinata area, sulla base dei processi e delle forme che sono stati attivi in passato.

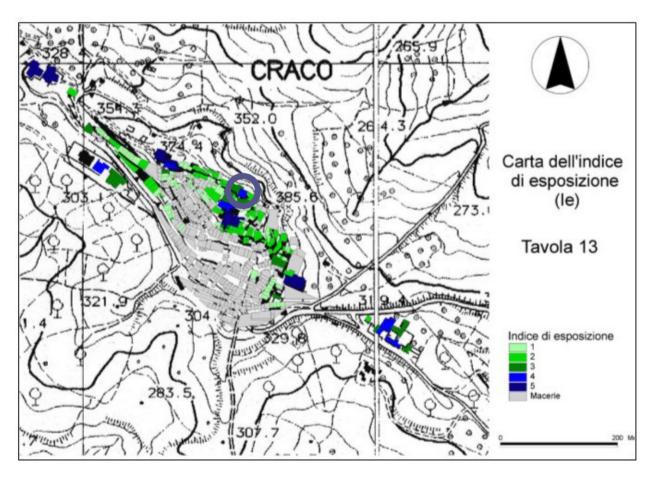
Esposizione: Individua elementi che possono essere negativamente affetti da un evento franoso, identificabili attraverso categorie omogenee quali: popolazione, edifici, infrastrutture (vie di comunicazione), attività economiche, beni culturali, ecc


Vulnerabilità: Intensità di un evento franoso.

La combinazione dell'Esposizione (E) e della Vulnerabilità (V) fornisce il "danno potenziale" o grado di perdita degli elementi esposti.

Il **Rischio frana** esprime, quindi, il "**Danno atteso**" e dipende dal "danno potenziale" e dalla probabilità di occorrenza del fenomeno franoso. La valutazione del rischio si realizza attraverso l'incrocio fra la pericolosità e il "danno potenziale".

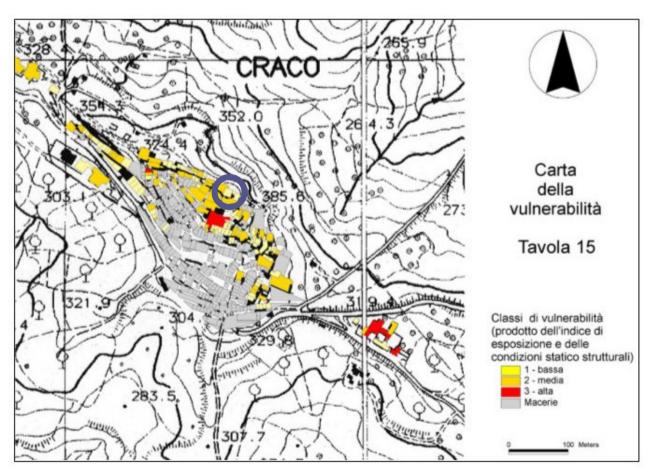
ANALISI DELLA PERICOLOSITA'



La **pericolosità** è in funzione dei fattori di innesco e tempi di ritorno, influenzati dagli eventi piovosi estremi subito precedenti alla

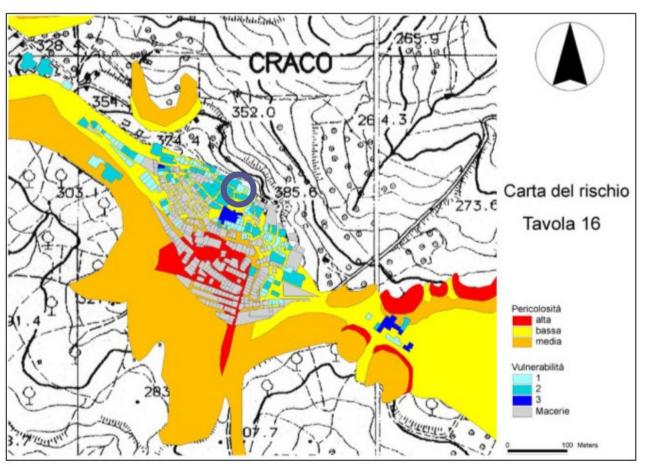
Valutazione qualitativa dei fenomeni superficiali e profondi, che si basa pericolosità spaziale.

ANALISI DELL'ESPOSIZIONE


L'indice di esposizione è stato analizzato attraverso la valutazione socio/economica delle conseguenze degli eventi franosi sulla "comunità" di Craco, ed in particolare, sugli edifici ormai abbandonati, ed è desunto dalla sovrapposizione di due indicatori:

- Ind. STORICO/CULTURALE
- Ind. COMPLESSITA' DI RESTAURO

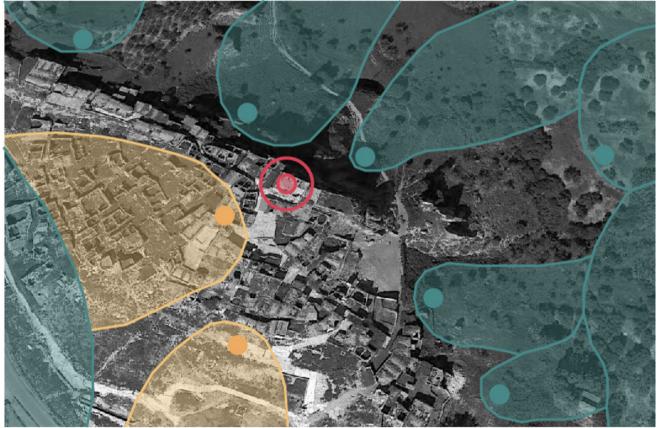
TORRE:


Ind. Esposizione = 4

ANALISI DELLA VULNERABILITA'

La classe di vulnerabilità è assimilabile al prodotto dell'indice di esposizione e delle condizioni staticostrutturali degli edifici (semplificazione Linee Guida). L'indice di vulnerabilità rappresenta la relazione tra la distribuzione delle condizioni staticostrutturali dei beni esposti e i parametri relativi la distanza degli stessi dall'area di corona della frana e rispetto l'evoluzione spaziale del fenomeno.

ANALISI DEL RISCHIO


La valutazione del Rischio del Centro Storico è stata condotta attraverso l'analisi completa delle tre componenti: pericolosità, vulnerabilità e indice di esposizione, che sono state determinate secondo scale qualitative. Pertanto, in realtà, è più giusto definirla una valutazione della propensione al danno.

LA TORRE:

- Ind. Pericolosità = BASSA
- Ind. Vulnerabilità = 1

Progetto Inventario dei Fenomeni Franosi in Italia - IFFI

ANALISI TIPOLOGIA ED EVOLUZIONE FRANA

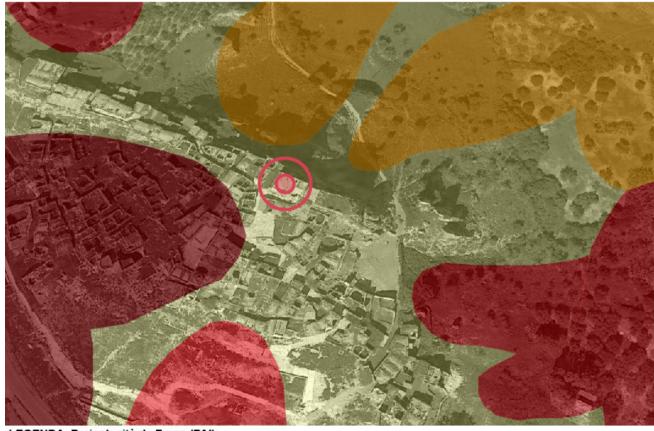
Carta IFFI, che raccoglie e scheda a livello tipologico le frane.

Sul territorio del Comune di Craco sono individuate due tipologie di frana:

- Colamento Lento
- Scivolamento
 Rotazionale/Traslativo

TORRE = Nessun evento franoso attivo

LEGENDA Carta IFFI-Frane:



SCIVOLAMENTO ROTAZIONALE/TRASLATIVO (attivo/riattivato/sospeso):
Conglomerati, Brecce

Piani di Assetto Idrogeologico - PAI

VALUTAZIONI

LEGENDA_Pericolosità da Frana (PAI):

Molto elevata P4 Elevata P3 Media P2

ISPRA nel 2017 ha prodotto la "nuova" mappa della pericolosità da frana per il monitoraggio, controllo e verifica sull'attuazione e sulla coerenza con la pianificazione del rischio idrogeologico.
La mosaicatura è stata

La mosaicatura è stata utilizzata per la produzione dei nuovi indicatori di rischio per frane:

- P4 molto elevata
- P3 elevata
- P2 media
- P1 moderata
- •AA aree di attenzione

TORRE = Area di Attenzione

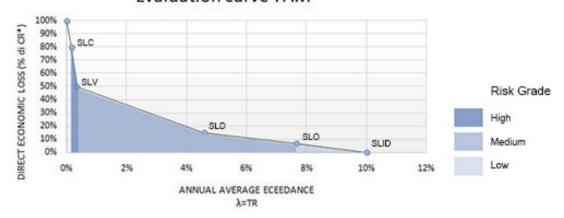
ANALISI MULTIRISCHIO

RISCHIO FRANA TORRE: Scenari

METODOLOGIA IPOTIZZATA prevede:

- 1. Individuare Tipologia Frana;
- 2. Individuare Pericolosità Frana;
- 3. Ipotizzare scenari che descrivano e valutino il Rischio connesso al tipo di evento considerato e che tengano in conto del fattore legato all'esposizione, attraverso la definizione di tre Gradi di danno.
- **1. Tipologia di Frana** presa in considerazione:
 - COLATA LENTA
- 2. Rischio/Pericolosità Frana Basso, in quanto:
 - CARTA PAI: Area di Attenzione (AA)
 - PROGETTO ENFA: Basso
- **3. Scenari** attraverso la definizione di tre gradi di danno:

GRADO DI DANNO	BENI IMMOBILI	ATTIVITA'
Lieve	Danni estetici o funzionali	Attività socio-economiche non interrotte
Medio	Danni funzionali più gravi	Interruzione delle attività socio- economiche
Alto	Danni strutturali lievi e rilevanti, fino al completo collasso	Distruzione attività socio-economiche


ANALISI MULTIRISCHIO

RISCHIO SISMICO TORRE: Scenari

METODOLOGIA IPOTIZZATA prevede:

• Individuazione possibili **Scenari di danno**, rispetto il raggiungimento dei vari **Stati Limite**, in tre gradi di danno attraverso la **suddivisione dell'area sottesa della curva** PAM, quindi:

Evaluation curve PAM

GRADO DI DANNO	STATI LIMITE	BENI IMMOBILI	ATTIVITA'
Lieve	SLID - SLO	No danni strutturali	Attività socio-economiche non interrotte
Medio	SLO-SLD-SLV	Danni non strutturali o strutturali lievi	Interruzione delle attività socio- economiche
Alto	SLV-SLC	Danni strutturali gravi che portano al collasso o alla possibile perdita di vite umane	Distruzione attività socio-economiche

ANALISI MULTIRISCHIO

"MATRICE MULTIRISCHIO": Confronto valori

• La Torre Normanna subisce relativamente gli effetti del rischio Frana, quindi il Rischio Sismico per quanto non elevato risulta dominante.

GRADO DEL DANNO		RISCHIO FRANA (L)	Alto (High)		
		Lieve (Low)	Medio (Medium)	Alto (High)		
RISCHIO SISMICO	Lieve (Low)	El-Ll	El-Lm	El-Lh		
(E)	Medio (Medium)	Em-Ll	Em-Lm	Em-Lh		
	Alto (High)	Eh-Ll	Eh-Lm	Eh-Lh		

DIVERSI SCENARI:

- **1. EI-LI**: entrambi i Rischi causano livello di danno basso, per il quale non si prevedono quadri di danneggiamento strutturale rilevanti ed interruzioni di fruizione dell'attività:
- **2. Em-Ll**: il rischio sismico risulta dominate su quello da frana, con danni non strutturali o strutturali lievi e l'interruzione della fruizione;
- **3. Eh-Ll**: il rischio sismico risulta dominate su quello da frana, con danni strutturali rilevati che potrebbero portare al crollo e interruzione immediata della fruizione;
- **4. El-Lm**: Rischio medio da frana predominate sul Rischio sismico basso, i danni sono solo non strutturali o funzionali per cui si ha solo perdita di fruibilità;
- **5. Em-Lm**: La combinazione di entrambi i Rischi, simico e da frana, ad un livello medio porta alla non fruizione della Torre e alla presenza di danni strutturali lievi e non strutturali;
- **6. Eh-Lm**: il Rischio simico alto combinato con un rischio frana medio causa la non fruizione della Torre e la presenza di danni strutturali rilevanti fino al possibile collasso parziale o totale della struttura;
- **7. El-Lh**: il Rischio da frana alto predominate sul Rischio sismico basso, per cui i danni riscontrabili sono strutturali lievi e portano alla non fruibilità della Torre;
- **8. Em-Lh**: Rischio da frana alto e Rischio sismico medio, i danni riscontrabili sono strutturali rilevanti e portano alla non fruibilità della Torre;
- **9. Eh-Lh**: Entrambi i Rischi alti, i danni riscontrabili sono strutturali rilevanti fino al possibile collasso parziale o totale della struttura e portano alla non fruibilità della Torre.

